Part Number Hot Search : 
74AC374 RT8252B NE68800 A1874 HV832 TQ8032 A78R05PI 2SK3498
Product Description
Full Text Search
 

To Download LT1213ACN8 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 lt1213/lt1214 28mhz, 12v/ m s, single supply dual and quad precision op amps s f ea t u re n slew rate 12v/ m s typ n gain-bandwidth product 28mhz typ n fast settling to 0.01% 2v step to 200 m v 500ns typ 10v step to 1mv 1.1 m s typ n excellent dc precision in all packages input offset voltage 275 m v max input offset voltage drift 6 m v/ c max input offset current 40na max input bias current 200na max open-loop gain 1200v/mv min n single supply operation input voltage range includes ground output swings to ground while sinking current n low input noise voltage 10nv/ ? hz typ n low input noise current 0.2pa/ ? hz typ n specified at 3.3v, 5v and 15v n large output drive current 30ma min n low supply current per amplifier 3.5ma max n dual in 8-pin dip and so-8 n quad in 14-pin dip and narrow so-16 the lt1213 is a dual, single supply precision op amp with a 28mhz gain-bandwidth product and a 12v/ m s slew rate. the lt1214 is a quad version of the same amplifier. the dc precision of the lt1213/lt1214 eliminates trims in most systems while providing high frequency perfor- mance not usually found in single supply amplifiers. the lt1213/lt1214 will operate on any supply greater than 2.5v and less than 36v total. these amplifiers are specified at single 3.3v, single 5v and 15v supplies, and only require 2.7ma of quiescent supply current per ampli- fier. the inputs can be driven beyond the supplies without damage or phase reversal of the output. the minimum output drive is 30ma, ideal for driving low impedance loads. u s a o pp l ic at i n 2.5v full-scale 12-bit systems v os 0.45lsb n 10v full-scale 16-bit systems v os 1.8lsb n active filters n photodiode amplifiers n dac current-to-voltage amplifiers n battery-powered systems d u escriptio u a o pp l ic at i ty p i ca l frequency response frequency (hz) 10k gain (db) 100k 1m 10m 1213/14 ta02 10 0 10 20 30 40 50 ?0 single supply 3-pole 1mhz butterworth filter note: for applications requiring higher slew rate, see the lt1215/lt1216 data sheet. for lower power and lower slew rate, see the lt1211/lt1212 data sheet. + v in v + 1/2 lt1213 v out 1213/14 ta01 r1 680 w 4.12k c2 200pf r2 680 w r3 680 w c3 390pf 4.12k 5pf c1 150pf a v = 2 maximum output offset = 714 m v 0.1 m f
2 lt1213/lt1214 a u g w a w u w a r b s o lu t exi t i s total supply voltage (v + to v C ) ............................. 36v input current ..................................................... 15ma output short-circuit duration (note 1) ........ continuous operating temperature range lt1213c/lt1214c ............................ C 40 c to 85 c lt1213m ......................................... C 55 c to 125 c storage temperature range ................ C 65 c to 150 c junction temperature (note 2) plastic package (n8, s8, n, s) ........................ 150 c ceramic package (j8) ...................................... 175 c lead temperature (soldering, 10 sec)................. 300 c wu u package / o rder i for atio order part number t jmax = 175 c, q ja = 100 c/w (j) t jmax = 150 c, q ja = 100 c/w (n) s8 part marking 1213 order part number order part number order part number t jmax = 150 c, q ja = 150 c/w t jmax = 150 c, q ja = 100 c/w t jmax = 150 c, q ja = 70 c/w package number of max tc v os ceramic dip plastic dip surface mount op amps t a range max v os (25 c) ( d v os / d t) (j) (n) (s) two (dual) C 40 c to 85 c 150 m v 1.5 m v/ c LT1213ACN8 275 m v3 m v/ c lt1213cn8 275 m v6 m v/ c lt1213cs8 two (dual) C 55 c to 125 c 150 m v 1.5 m v/ c lt1213amj8 275 m v3 m v/ c lt1213mj8 four (quad) C 40 c to 85 c 275 m v6 m v/ c lt1214cn lt1214cs available optio s u j8 package 8-lead ceramic dip n8 package 8-lead plastic dip 1 2 3 4 8 7 6 5 top view out a in a +in a v v + out b in b +in b b a n package 14-lead plastic dip out a in a +in a v + +in b in b out b out d in d +in d v +in c in c out c 1 2 3 4 5 6 7 14 13 12 11 10 9 8 d a c b top view 1 2 3 4 8 7 6 5 top view s8 package 8-lead plastic soic b a out a in a +in a v v + out b in b +in b top view s package 16-lead plastic soic 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 out a ?n a +in a v + +in b in b out b nc out d in d +in d v +in c in c out c nc a c b d lt1213cn8 LT1213ACN8 lt1213mj8 lt1213amj8 lt1214cn lt1213cs8 lt1214cs
3 lt1213/lt1214 5v e lectr ic al c c hara terist ics v s = 5v, v cm = 0.5v, v out = 0.5v, t a = 25 c, unless otherwise noted. lt1213ac lt1213c/lt1213m lt1213am lt1214c symbol parameter conditions min typ max min typ max units v os input offset voltage 75 150 100 275 m v d v os long-term input offset 0.5 0.6 m v/mo d time voltage stability i os input offset current 5 30 5 40 na i b input bias current 80 160 100 200 na input noise voltage 0.1hz to 10hz 200 200 nv p-p e n input noise voltage density f o = 10hz 10 10 nv/ ? hz f o = 1000hz 10 10 nv/ ? hz i n input noise current density f o = 10hz 0.9 0.9 pa/ ? hz f o = 1000hz 0.2 0.2 pa/ ? hz input resistance (note 3) differential mode 10 40 10 40 m w common mode 200 200 m w input capacitance f = 1mhz 10 10 pf input voltage range 3.5 3.8 3.5 3.8 v 0 C 0.3 0 C 0.3 v cmrr common-mode rejection ratio v cm = 0v to 3.5v 90 105 86 105 db psrr power supply rejection ratio v s = 2.5v to 12.5v 93 116 90 116 db a vol large-signal voltage gain v o = 0.05v to 3.7v, r l = 500 w 250 850 250 850 v/mv maximum output voltage swing output high, no load 4.30 4.39 4.30 4.39 v (note 4) output high, i source = 1ma 4.20 4.30 4.20 4.30 v output high, i source = 20ma 3.80 3.92 3.80 3.92 v output low, no load 0.004 0.007 0.004 0.007 v output low, i sink = 1ma 0.033 0.050 0.033 0.050 v output low, i sink = 20ma 0.475 0.620 0.475 0.620 v i o maximum output current (note 9) 30 50 30 50 ma sr slew rate a v = C 2 8.5 8.5 v/ m s gbw gain-bandwidth product f = 100khz 26 26 mhz i s supply current per amplifier 2.0 2.7 3.8 2.0 2.7 3.8 ma minimum supply voltage single supply, v cm = 0v 2.2 2.5 2.2 2.5 v full power bandwidth a v = 1, v o = 2.5v p-p 1.0 1.0 mhz t r , t f rise time, fall time a v = 1, 10% to 90%, v o = 100mv 24 24 ns os overshoot a v = 1, v o = 100mv 30 30 % t pd propagation delay a v = 1, v o = 100mv 17 17 ns t s settling time 0.01%, a v = 1, d v o = 2v 500 500 ns open-loop output resistance i o = 0ma, f = 10mhz 50 50 w thd total harmonic distortion a v = 1, v o = 1v rms , 20hz to 20khz 0.001 0.001 %
4 lt1213/lt1214 5v e lectr ic al c c hara terist ics v s = 5v, v cm = 0.5v, v out = 0.5v, 0 c t a 70 c, unless otherwise noted. v s = 5v, v cm = 0.5v, v out = 0.5v, C 40 c t a 85 c, unless otherwise noted. (note 5) lt1213ac lt1213c/lt1214c symbol parameter conditions min typ max min typ max units v os input offset voltage 100 175 150 375 m v d v os input offset voltage drift 8-pin dip package 0.7 1.5 1 3 m v/ c d t (note 3) 14-pin dip, soic package 2 6 m v/ c i os input offset current 10 45 10 55 na i b input bias current 90 190 110 230 na input voltage range 3.4 3.5 3.4 3.5 v 0.1 C 0.1 0.1 C 0.1 v cmrr common-mode rejection ratio v cm = 0.1v to 3.4v 89 105 85 105 db psrr power supply rejection ratio v s = 2.5v to 12.5v 92 114 89 114 db a vol large-signal voltage gain v o = 0.05v to 3.7v, r l = 500 w 200 580 200 580 v/mv maximum output voltage swing output high, no load 4.20 4.33 4.20 4.33 v (note 4) output high, i source = 1ma 4.10 4.25 4.10 4.25 v output high, i source = 15ma 3.84 3.96 3.84 3.96 v output low, no load 0.005 0.008 0.005 0.008 v output low, i sink = 1ma 0.036 0.055 0.036 0.055 v output low, i sink = 15ma 0.370 0.530 0.370 0.530 v i s supply current per amplifier 1.8 2.9 4.0 1.8 2.9 4.0 ma lt1213ac lt1213c/lt1214c symbol parameter conditions min typ max min typ max units v os input offset voltage 120 200 175 500 m v d v os input offset voltage drift 8-pin dip package 0.7 1.5 1 3 m v/ c d t (note 3) 14-pin dip, soic package 2 6 m v/ c i os input offset current 15 50 20 75 na i b input bias current 100 200 120 250 na input voltage range 3.1 3.2 3.1 3.2 v 0.2 0 0.2 0 v cmrr common-mode rejection ratio v cm = 0.2v to 3.1v 88 104 84 104 db psrr power supply rejection ratio v s = 2.5v to 12.5v 91 113 88 113 db a vol large-signal voltage gain v o = 0.05v to 3.7v, r l = 500 w 200 510 200 510 v/mv maximum output voltage swing output high, no load 4.15 4.25 4.15 4.25 v (note 4) output high, i source = 1ma 4.00 4.16 4.00 4.16 v output high, i source = 15ma 3.72 3.89 3.72 3.89 v output low, no load 0.006 0.009 0.006 0.009 v output low, i sink = 1ma 0.037 0.060 0.037 0.060 v output low, i sink = 15ma 0.380 0.550 0.380 0.550 v i s supply current per amplifier 1.5 2.9 4.0 1.5 2.9 4.0 ma
5 lt1213/lt1214 5v e lectr ic al c c hara terist ics v s = 5v, v cm = 0.5v, v out = 0.5v, C 55 c t a 125 c, unless otherwise noted. v s = 15v, v cm = 0v, v out = 0v, t a = 25 c, unless otherwise noted. + 15v e lectr ic al c c hara terist ics C lt1213am lt1213m symbol parameter conditions min typ max min typ max units v os input offset voltage 140 250 200 500 m v d v os input offset voltage drift 0.7 1.5 1.0 3.0 m v/ c d t (note 3) i os input offset current 20 70 25 100 na i b input bias current 105 210 125 275 na input voltage range 3.1 3.2 3.1 3.2 v 0.4 0.2 0.4 0.2 v cmrr common-mode rejection ratio v cm = 0.4v to 3.1v 87 104 83 104 db psrr power supply rejection ratio v s = 2.5v to 12.5v 90 113 87 113 db a vol large-signal voltage gain v o = 0.05v to 3.7v, r l = 500 w 150 300 150 300 v/mv maximum output voltage swing output high, no load 4.05 4.20 4.05 4.20 v (note 4) output high, i source = 1ma 3.90 4.10 3.90 4.10 v output high, i source = 15ma 3.60 3.80 3.60 3.80 v output low, no load 0.007 0.012 0.007 0.012 mv output low, i sink = 1ma 0.040 0.070 0.040 0.070 mv output low, i sink = 15ma 0.400 0.750 0.400 0.750 mv i s supply current per amplifier 1.3 3.0 4.2 1.3 3.0 4.2 ma lt1213ac lt1213c/lt1213m lt1213am lt1214c symbol parameter conditions min typ max min typ max units v os input offset voltage 125 400 150 550 m v i os input offset current 5 30 5 40 na i b input bias current 70 150 90 190 na input voltage range 13.5 13.8 13.5 13.8 v C15.0 C 15.3 C15.0 C 15.3 v cmrr common-mode rejection ratio v cm = C15v to 13.5v 90 107 86 107 db psrr power supply rejection ratio v s = 2v to 18v 93 116 90 116 db a vol large-signal voltage gain v o = 0v to 10v, r l = 2k 1200 4000 1200 4000 v/mv maximum output voltage swing output high, i source = 20ma 13.7 13.9 13.7 13.9 v output low, i sink = 20ma C14.3 C14.5 C14.3 C14.5 v i o maximum output current (note 9) 30 50 30 50 ma sr slew rate a v = C 2 (note 6) 10 12 10 12 v/ m s gbw gain-bandwidth product f = 100khz 15 28 15 28 mhz i s supply current per amplifier 2.0 3.4 4.7 2.0 3.4 4.7 ma channel separation v o = 10v, r l = 2k 128 140 128 140 db minimum supply voltage equal split supplies 1.2 2.0 1.2 2.0 v full-power bandwidth a v = 1, v o = 20v p-p 150 150 khz settling time 0.01%, a v = 1, d v o = 10v 1.1 1.1 m s
6 lt1213/lt1214 v s = 15v, v cm = 0v, v out = 0v, 0 c t a 70 c, unless otherwise noted. + C 15v e lectr ic al c c hara terist ics v s = 15v, v cm = 0v, v out = 0v, C 55 c t a 125 c, unless otherwise noted. v s = 15v, v cm = 0v, v out = 0v, C 40 c t a 85 c, unless otherwise noted. (note 5) lt1213ac lt1213c/lt1214c symbol parameter conditions min typ max min typ max units v os input offset voltage 150 425 200 650 m v d v os input offset voltage drift 8-pin dip package 0.7 1.5 1 3 m v/ c d t (note 3) 14-pin dip, soic package 2 6 m v/ c i os input offset current 10 35 10 45 na i b input bias current 90 160 95 200 na input voltage range 13.4 13.5 13.4 13.5 v C14.9 C15.1 C14.9 C15.1 v cmrr common-mode rejection ratio v cm = C14.9v to 13.4v 89 105 85 105 db psrr power supply rejection ratio v s = 2v to 18v 92 115 89 115 db a vol large-signal voltage gain v o = 0v to 10v, r l = 2k 1000 4000 1000 4000 v/mv maximum output voltage swing output high, i source = 15ma 13.8 14.0 13.8 14.0 v output low, i sink = 15ma C 14.4 C 14.6 C 14.4 C 14.6 v i s supply current per amplifier 1.8 3.7 5.0 1.8 3.7 5.0 ma lt1213am lt1213m symbol parameter conditions min typ max min typ max units v os input offset voltage 200 500 300 800 m v d v os input offset voltage drift 0.7 1.5 1 3 m v/ c d t (note 3) i os input offset current 15 60 25 90 na i b input bias current 100 200 110 250 na input voltage range 13.1 13.2 13.1 13.2 v C14.6 C14.8 C14.6 C14.8 v cmrr common-mode rejection ratio v cm = C 14.6v to 13.1v 87 104 83 104 db psrr power supply rejection ratio v s = 2v to 15v 90 114 87 114 db a vol large-signal voltage gain v o = 0v to 10v, r l = 2k 800 1100 800 1100 v/mv maximum output voltage swing output high, i source = 15ma 13.6 13.8 13.6 13.8 v output low, i sink = 15ma C14.2 C14.5 C14.2 C14.5 v i s supply current per amplifier 1.3 4.0 5.4 1.3 4.0 5.4 ma lt1213ac lt1213c/lt1214c symbol parameter conditions min typ max min typ max units v os input offset voltage 175 450 250 700 m v d v os input offset voltage drift 8-pin dip package 0.7 1.5 1 3 m v/ c d t (note 3) 14-pin dip, soic package 2 6 m v/ c i os input offset current 10 40 20 75 na i b input bias current 95 180 105 220 na input voltage range 13.1 13.2 13.1 13.2 v C14.8 C15.0 C14.8 C15.0 v cmrr common-mode rejection ratio v cm = C 14.8v to 13.1v 88 104 84 104 db psrr power supply rejection ratio v s = 2v to 18v 91 114 88 114 db a vol large-signal voltage gain v o = 0v to 10v, r l = 2k 1000 4000 1000 4000 v/mv maximum output voltage swing output high, i source = 15ma 13.7 13.9 13.7 13.9 v output low, i sink = 15ma C 14.4 C 14.6 C 14.4 C 14.6 v i s supply current per amplifier 1.5 3.7 5.1 1.5 3.7 5.1 ma
7 lt1213/lt1214 3.3v e lectr ic al c c hara terist ics v s = 3.3v, v cm = 0.5v, v out = 0.5v, t a = 25 c, unless otherwise noted. (note 7) v s = 3.3v, v cm = 0.5v, v out = 0.5v, 0 c t a 70 c, unless otherwise noted. (note 7) v s = 3.3v, v cm = 0.5v, v out = 0.5v, C 40 c t a 85 c, unless otherwise noted. (note 5, 7) v s = 3.3v, v cm = 0.5v, v out = 0.5v, C 55 c t a 125 c, unless otherwise noted. (note 7) lt1213ac lt1213c/lt1213m lt1213am lt1214c symbol parameter conditions min typ max min typ max units v os input offset voltage 75 150 100 275 m v input voltage range (note 8) 1.8 2.1 1.8 2.1 v 0 C 0.3 0 C 0.3 v maximum output voltage swing output high, no load 2.60 2.69 2.60 2.69 v output high, i source = 1ma 2.50 2.60 2.50 2.60 v output high, i source = 20ma 2.10 2.22 2.10 2.22 v output low, no load 0.004 0.007 0.004 0.007 v output low, i sink = 1ma 0.033 0.050 0.033 0.050 v output low, i sink = 20ma 0.475 0.620 0.475 0.620 v i o maximum output current 30 50 30 50 ma lt1213am lt1213m symbol parameter conditions min typ max min typ max units v os input offset voltage 130 250 200 500 m v input voltage range (note 8) 1.4 1.5 1.4 1.5 v 0.4 0.2 0.4 0.2 v maximum output voltage swing output high, no load 2.35 2.50 2.35 2.50 v output high, i source = 1ma 2.20 2.40 2.20 2.40 v output high, i source = 15ma 1.90 2.10 1.90 2.10 v output low, no load 0.007 0.012 0.007 0.012 v output low, i sink = 1ma 0.040 0.070 0.040 0.070 v output low, i sink = 15ma 0.500 0.750 0.500 0.750 v lt1213ac lt1213c/lt1214c symbol parameter conditions min typ max min typ max units v os input offset voltage 100 175 150 375 m v input voltage range (note 8) 1.7 1.8 1.7 1.8 v 0.1 C 0.1 0.1 C 0.1 v maximum output voltage swing output high, no load 2.50 2.63 2.50 2.63 v output high, i source = 1ma 2.40 2.55 2.40 2.55 v output high, i source = 15ma 2.14 2.26 2.14 2.26 v output low, no load 0.005 0.008 0.005 0.008 v output low, i sink = 1ma 0.037 0.055 0.037 0.055 v output low, i sink = 15ma 0.400 0.530 0.400 0.530 v lt1213ac lt1213c/lt1214c symbol parameter conditions min typ max min typ max units v os input offset voltage 120 200 175 500 m v input voltage range (note 8) 1.4 1.5 1.4 1.5 v 0.2 0 0.2 0 v maximum output voltage swing output high, no load 2.45 2.55 2.45 2.55 v output high, i source = 1ma 2.30 2.46 2.30 2.46 v output high, i source = 15ma 2.02 2.19 2.02 2.19 v output low, no load 0.006 0.009 0.006 0.009 v output low, i sink = 1ma 0.040 0.060 0.040 0.060 v output low, i sink = 15ma 0.410 0.550 0.410 0.550 v
8 lt1213/lt1214 note 1: a heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely. note 2: t j is calculated from the ambient temperature t a and power dissipation p d according to the following formulas: lt1213mj8, lt1213amj8: t j = t a + (p d 100 c/w) lt1213cn8, LT1213ACN8: t j = t a + (p d 100 c/w) lt1213cs8: t j = t a + (p d 150 c/w) lt1214cn: t j = t a + (p d 70 c/w) lt1214cs: t j = t a + (p d 100 c/w) note 3: this parameter is not 100% tested. note 4: guaranteed by correlation to 3.3v and 15v tests. note 5: the lt1213/lt1214 are not tested and are not quality-assurance sampled at C 40 c and at 85 c. these specifications are guaranteed by design, correlation and/or inference from C 55 c, 0 c, 25 c, 70 c and/or 125 c tests. note 6: slew rate is measured between 8.5v on an output swing of 10v on 15v supplies. note 7: most lt1213/lt1214 electrical characteristics change very little with supply voltage. see the 5v tables for characteristics not listed in the 3.3v table. note 8: guaranteed by correlation to 5v and 15v tests. note 9: guaranteed by correlation to 3.3v tests. cc hara terist ics uw a t y p i ca lper f o r c e e lectr ic al c c hara terist ics distribution of offset voltage drift distribution of input offset voltage with temperature distribution of input offset voltage distribution of offset voltage drift distribution of input offset voltage with temperature distribution of input offset voltage input offset voltage ( m v) 350 percent of units (%) 70 60 50 40 30 20 10 0 150 50 150 1213/14 g01 250 ?0 250 350 lt1213 j8 package lt1213 n8 package v s = 5v offset voltage drift with temperature ( m v/?) ? percent of units (%) 50 40 30 20 10 0 3 1213/14 g02 ? ? 1 lt1213 j8 package lt1213 n8 package v s = 5v 02 input offset voltage ( m v) 700 percent of units (%) 70 60 50 40 30 20 10 0 300 100 300 1213/14 g03 500 100 500 700 lt1213 j8 package lt1213 n8 package v s = 15v input offset voltage ( m v) 350 percent of units (%) 70 60 50 40 30 20 10 0 150 50 150 1213/14 g04 250 ?0 250 350 lt1213 s8 package lt1214 n package lt1214 s package v s = 5v offset voltage drift with temperature ( m v/?) ? percent of units (%) 50 40 30 20 10 0 6 1213/14 g05 ? ? 2 lt1213 s8 package lt1214 n package lt1214 s package v s = 5v 04 input offset voltage ( m v) 700 percent of units (%) 70 60 50 40 30 20 10 0 300 100 300 1213/14 g06 500 100 500 700 lt1213 s8 package lt1214 n package lt1214 s package v s = 15v
9 lt1213/lt1214 cc hara terist ics uw a t y p i ca lper f o r c e voltage gain, phase vs gain-bandwidth product, voltage gain vs frequency frequency phase margin vs supply voltage frequency (hz) 100k voltage gain (db) 60 40 20 0 ?0 1m 10m 100m 1213/14 g08 100 80 60 40 20 0 20 40 ?0 phase shift (deg) phase gain v s = 5v v s = 5v v s = 15v c l = 20pf r l = 2k v s = 15v frequency (hz) 1 voltage gain (db) 100m 1213/14 g07 100 10k 1m 140 120 100 80 60 40 20 0 ?0 10 1k 100k 10m c l = 20pf r l = 2k v s = 5v v s = 15v total supply voltage (v) 1 gain-bandwidth product (mhz) 32 30 28 26 24 22 20 10 40 1213/14 g09 60 50 40 30 20 10 0 3 5 7 20 30 phase margin (deg) t a = 25? t a = 125? t a = 25?, 125? t a = 55? t a = 55? slew rate vs temperature slew rate vs supply voltage capacitive load handling total supply voltage (v) 0 slew rate (v/ m s) 8 16 20 36 412 24 28 32 16 14 12 10 8 6 4 1213/14 g11 a v = 2 r l = 10k t a = 125? t a = 25? t a = 55? frequency (hz) output swing (v p-p ) 5 4 3 2 1 0 10k 100k 1m 1213/14 g13 1k a v = 1 a v = 1 v s = 5v 100 frequency (hz) output swing (v p-p ) 30 25 20 15 10 5 0 10k 100k 1m 1213/14 g14 1k 100 v s = ?5v frequency (hz) total harmonic distortion and noise (%) 10 1k 10k 100k 1213/14 g15 100 0.1 0.01 0.001 0.0001 v s = 5v v o = 3v p-p r l = 1k a v = 10 a v = 1 undistorted output swing undistorted output swing total harmonic distortion and vs frequency, v s = 5v vs frequency, v s = 15v noise vs frequency temperature (?) ?0 slew rate (v/ m s) 18 16 14 12 10 8 6 4 2 ?5 05075 1213/14 g10 100 125 25 t a = 25? a v = 2 r l = 10k v s = 15v v s = 5v capacitive load (pf) 10 overshoot (%) 80 70 60 50 40 30 20 10 0 100 1213/14 g12 a v = 1 a v = 5 a v = 10 v s = 5v 1000
10 lt1213/lt1214 cc hara terist ics uw a t y p i ca lper f o r c e open-loop voltage gain positive output saturation vs supply voltage open-loop gain, v s = 5v voltage vs temperature output short-circuit current channel separation vs frequency vs temperature output impedance vs frequency negative output saturation voltage gain vs load resistance open-loop gain, v s = 15v voltage vs temperature input, 5 m v/div total supply voltage (v) 0 open-loop voltage gain (v/mv) 8 16 20 36 412 24 28 32 6k 5k 4k 3k 2k 1k 0 1213/14 g16 t a = 25? t a = 55? r l = 2k t a = 125? 0123 4 output (v) 1213/14 g17 r l = 2k r l = 500 w input, 5 m v/div load resistance ( w ) 10 open-loop voltage gain (v/mv) 10k 1k 100 10 100 1k 10k 1213/14 g19 t a = 25? v s = 5v v s = 15v C10 0 10 output (v) 1213/14 g20 r l = 2k r l = 500 w frequency (hz) channel separation (db) 140 130 120 110 100 90 80 70 60 50 40 30 10k 100k 10m 1213/14 g22 1m v s = 15v t a = 25? temperature (?) ?0 saturation voltage, v out ?v (mv) 1000 100 10 1 25 125 1213/14 g21 i sink = 30ma v s = 5v 0 25 50 100 75 i sink = 10ma i sink = 1ma i sink = 10 m a frequency (hz) 10k output impedance ( w ) 1000 100 10 1 0.1 0.01 100k 1m 10m 1213/14 g24 a v = 100 v s = 15v a v = 10 a v = 1 temperature (?) ?0 output short-circuit current (ma) 70 60 50 40 30 25 75 ?5 0 50 100 125 1213/14 g23 v s = ?5v sourcing or sinking v s = 5v sourcing temperature (?) ?0 saturation voltage, v + ?v out (v) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 25 75 ?5 0 50 100 125 i source = 20ma v s = 5v i source = 10ma i source = 1ma i source = 10 m a 1213/14 g18
11 lt1213/lt1214 250 m v/div 100ns/div v s = 5v a v = 1 1213/14 g31 500mv/div 5v settling cc hara terist ics uw a t y p i ca lper f o r c e 15v small-signal response 50ns/div v s = 15v a v = 1 1213/14 g28 5v small-signal response settling time to 0.01% vs output step 10v 0v C10v 15v large-signal response 3v 0v 5v large-signal response 15v large-signal response 3v 0v 5v large-signal response 1mv/div 2v/div 15v settling 20mv/div 20mv/div 10v 0v C10v 200ns/div v s = 15v a v = C1 1213/14 g32 settling time (ns) 300 output step (v) 500 900 1213/14 g33 10 8 6 4 2 0 ? ? ? ? ?0 1100 inverting v s = ?5v 700 noninverting noninverting inverting 400 600 800 1000 200ns/div v s = 5v a v = 1 1213/14 g26 50ns/div v s = 5v a v = 1 1213/14 g25 200ns/div v s = 5v a v = C1 r f = r g = 1k c f = 20pf 1213/14 g27 1 m s/div v s = 15v a v = 1 1213/14 g29 1 m s/div v s = 15v a v = C1 r f = r g = 1k 1213/14 g30
12 lt1213/lt1214 cc hara terist ics uw a t y p i ca lper f o r c e time after power-up (sec) 0 change in offset voltage ( m v) 2 1 0 ? ? 80 1213/14 g36 20 40 60 100 v s = 5v r l = 2 typical amplifiers temperature (?) common-mode range (v) v + v + ? v + ? 1213/14 g39 v +1 v ? v ? ?0 25 75 ?5 0 50 100 125 input noise current, noise common-mode rejection ratio input referred power supply voltage density vs frequency vs frequency rejection ratio vs frequency temperature (?) ?0 input bias current (na) 110 105 100 95 90 85 80 75 25 75 ?5 0 50 100 125 1213/14 g37 i os +i b ? b v s = 5v input bias current vs common-mode range input bias current vs temperature common-mode voltage vs temperature supply voltage (v) 0 supply current per amplifier (ma) 4 3 2 1 0 2 4 5 1213/14 g34 13 t a = 125? t a = 55? t a = 25? supply current vs supply votage supply current vs temperature warm-up drift vs time temperature (?) ?0 supply current per amplifier (ma) 4.2 3.8 3.4 3.0 2.6 2.2 1.8 ?5 05075 1213/14 g35 100 125 25 v s = 5v v s = 15v common-mode voltage (v) ? input bias current (na) 0 20 40 60 80 100 120 140 160 180 200 3 1213/14 g38 0 1 2 4 t a = 55? v s = 5v t a = 125? t a = 25? frequency (hz) 130 120 110 100 90 80 70 60 50 40 30 1k 100k 1m 10m 1213/14 g42 10k negative supply power supply rejection ratio (db) v s = 15v a v = 100 positive supply frequency (hz) 10k common-mode rejection ratio (db) 120 110 100 90 80 70 60 50 40 30 20 100k 1m 10m 1213/14 g41 v s = 5v frequency (hz) 20 18 16 14 12 10 8 6 4 2 0 10 1k 10k 100k 1213/14 g40 100 current noise input noise voltage density (nv/ ? hz) v s = 15v t a = 25? r s = 0 w voltage noise input noise current density (pa/ ? hz) 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0
13 lt1213/lt1214 u s a o pp l ic at i wu u i for atio supply voltage the lt1213/lt1214 op amps are fully functional and all internal bias circuits are in regulation with 2.2v of supply. the amplifiers will continue to function with as little as 1.5v, although the input common-mode range and the phase margin are about gone. the minimum operating supply voltage is guaranteed by the psrr tests which are done with the input common mode equal to 500mv and a minimum supply voltage of 2.5v. the lt1213/lt1214 are guaranteed over the full C 55 c to 125 c range with a minimum supply voltage of 2.5v. the positive supply pin of the lt1213/lt1214 should be bypassed with a small capacitor (about 0.01 m f) within an inch of the pin. when driving heavy loads and for good settling time, an additional 4.7 m f capacitor should be used. when using split supplies, the same is true for the negative supply pin. power dissipation the lt1213/lt1214 amplifiers combine high speed and large output current drive into very small packages. be- cause these amplifiers work over a very wide supply range, it is possible to exceed the maximum junction temperature under certain conditions. to insure that the lt1213/ lt1214 are used properly, calculate the worst case power dissipation, define the maximum ambient temperature, select the appropriate package and then calculate the maximum junction temperature. the worst case amplifier power dissipation is the total of the quiescent current times the total power supply voltage plus the power in the ic due to the load. the quiescent supply current of the lt1213/lt1214 has a positive tem- perature coefficient. the maximum supply current of each amplifier at 125 c is given by the following formula: i smax = 4.2 + 0.048 (v s C 5) in ma v s is the total supply voltage. the power in the ic due to the load is a function of the output voltage, the supply voltage and load resistance. the worst case occurs when the output voltage is at half supply, if it can go that far, or its maximum value if it cannot reach half supply. for example, calculate the worst case power dissipation while operating on 15v supplies and driving a 500 w load. i smax = 4.2 + 0.048 (30 C 5) = 5.4ma p dmax = 2 v s i smax + (v s C v omax ) v omax /r l p dmax = 2 15v 5.4ma + (15v C 7.5v) 7.5v/500 = 0.162 + 0.113 = 0.275 watt per amp if this is the dual lt1213, the total power in the package is twice that, or 0.550w. now calculate how much the die temperature will rise above the ambient. the total power dissipation times the thermal resistance of the package gives the amount of temperature rise. for this example, in the so-8 surface mount package, the thermal resistance is 150 c/w junction-to-ambient in still air. temperature rise = p dmax q ja = 0.550w 150 c/w = 82.5 c the maximum junction temperature allowed in the plastic package is 150 c. therefore the maximum ambient al- lowed is the maximum junction temperature less the temperature rise. maximum ambient = 150 c C 82.5 c = 67.5 c that means the so-8 dual can be operated at or below 67.5 c on 15v supplies with a 500 w load. as a guideline to help in the selection of the lt1213/ lt1214, the following table describes the maximum sup- ply voltage that can be used with each part based on the following assumptions: 1. the maximum ambient is 70 c or 125 c depending on the part rating. 2. the load is 500 w including the feedback resistors. 3. the output can be anywhere between the supplies. part max supplies max power at max t a lt1213mj8 18.0v or 14.1v 500mw lt1213cn8 23.7v or 18.0v 800mw lt1213cs8 18.7v or 14.7v 533mw lt1214cn 19.5v or 15.4v 1143mw lt1214cs 15.8v or 12.2v 800mw
14 lt1213/lt1214 u s a o pp l ic at i wu u i for atio positive rail, is about 100 w as the output starts to source current; this resistance drops to about 20 w as the current increases. therefore when the output sources 1ma, the output will swing to within 0.7v of the positive supply. while sourcing 30ma, it is within 1.25v of the positive supply. the output of the lt1213/lt1214 will swing to within 4mv of the negative supply while sinking zero current. thus, in a typical single supply application with the load going to ground, the output will go to within 4mv of ground. the open-loop output resistance when the output is driven hard into the negative rail is about 29 w at low currents and reduces to about 23 w at high currents. therefore when the output sinks 1ma, the output is about 33mv above the negative supply and while sinking 30ma, it is about 690mv above it. the output of the lt1213/lt1214 has reverse-biased diodes to each supply. if the output is forced beyond either supply, unlimited currents will flow. if the current is transient and limited to several hundred ma, no damage will occur. feedback components because the input currents of the lt1213/lt1214 are less than 200na, it is possible to use high value feedback resistors to set the gain. however, care must be taken to insure that the pole that is formed by the feedback resis- tors and the input capacitance does not degrade the stability of the amplifier. for example, if a single supply, noninverting gain of two is set with two 10k resistors, the lt1213/lt1214 will probably oscillate. this is because the amplifier goes open-loop at 6mhz (6db of gain) and has 45 of phase margin. the feedback resistors and the 10pf input capacitance generate a pole at 3mhz that introduces 63 of phase shift at 6mhz! the solution is simple, lower the values of the resistors or add a feedback capacitor of 10pf or more. inputs typically at room temperature, the inputs of the lt1213/ lt1214 can common mode 400mv below ground (v C ) and to within 1.2v of the positive supply with the amplifier still functional. however, the input bias current and offset voltage will shift as shown in the characteristic curves. for full precision performance, the common-mode range should be limited between ground (v C ) and 1.5v below the positive supply. when either of the inputs is taken below ground (v C ) by more than about 700mv, that input current will increase dramatically. the current is limited by internal 100 w resistors between the input pins and diodes to each supply. the output will remain low (no phase reversal) for inputs 1.3v below ground (v C ). if the output does not have to sink current, such as in a single supply system with a 1k load to ground, there is no phase reversal for inputs up to 8v below ground. there are no clamps across the inputs of the lt1213/ lt1214 and therefore each input can be forced to any voltage between the supplies. the input current will re- main constant at about 100na over most of this range. when an input gets closer than 1.5v to the positive supply, that input current will gradually decrease to zero until the input goes above the supply, then it will increase due to the previously mentioned diodes. if the inverting input is held more positive than the noninverting input by 200mv or more, while at the same time the noninverting input is within 300mv of ground (v C ), then the supply current will increase by 2ma and the noninverting input current will increase to about 10 m a. this should be kept in mind in comparator applications where the inverting input stays above ground (v C ) and the noninverting input is at or near ground (v C ). output the output of the lt1213/lt1214 will swing to within 0.61v of the positive supply with no load. the open-loop output resistance, when the output is driven hard into the
15 lt1213/lt1214 u s a o pp l ic at i wu u i for atio information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no represen- tation that the interconnection of its circuits as described herein will not infringe on existing patent rights. comparator applications sometimes it is desirable to use an op amp as a compara- tor. when operating the lt1213/lt1214 on a single 3.3v or 5v supply, the output interfaces directly with most ttl and cmos logic. the response time of the lt1213/lt1214 is a strong function of the amount of input overdrive as shown in the 4 2 0 100 0 4 2 0 100 0 5 m s/div v s = 5v 1213/14 ai02 r l = lt1213 comparator response (+) 20mv, 10mv, 5mv, 2mv overdrives lt1213 comparator response (C) 20mv, 10mv, 5mv, 2mv overdrives w i spl ii f ed s w a ch e ti c following photos. these amplifiers are unity-gain stable op amps and not fast comparators, therefore, the logic being driven may oscillate due to the long transition time. the output can be speeded up by adding 20mv or more of hysteresis (positive feedback), but the offset is then a function of the input direction. input (mv) output (v) output (v) input (mv) v s = 5v 1213/14 ai01 r l = 5 m s/div c i q5 q10 c f r f i 7 i 8 c o v c m bias out v + i 6 i 5 i 4 i 3 i 2 i 1 ?n +in 1213/14 ss q7 q9 q8 q11 q12 q14 q15 q13 q16 q6 q3 q4 q1 q2
16 lt1213/lt1214 u s a o pp l ic at i ty p i ca l ltc/gp 0793 10k rev 0 ? linear technology corporation 1993 linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7487 (408) 432-1900 l fax : (408) 434-0507 l telex : 499-3977 for package description please see other linear technology data sheets or databooks. common-mode voltage (v) 0.01 each input bias current (ma) 100 80 60 40 20 0 0.1 1 10 1213/14 ta03b v + = 5v input bias current vs common-mode voltage instrumentation amplifier with guard/shield driver and input bias current cancellation ground current sense amplifier difference amplifier with wide input common-mode range package descriptio u 1m r f 1020 w v + + 1/4 lt1214 a + 22pf inputs + output + 1/4 lt1214 d 5000pf 1k r g 113 w 1/4 lt1214 b 1m* 1m + 1/4 lt1214 c 200 w r f 1020 w 10k** 1k 10k r g 113 w guard guard 1213/14 ta03a common mode r in = 3g differential r in = 2m bandwidth = 2mhz t r = 170ms gain = 10 1 + = 100 r f r g () * ** trim for input bias current trim for cmrr 0.1 m f 1k v + 3.3v + 1/2 lt1213 lt1004-1.2 10k +in 750 w 0.1 m f gain = 1; v out = v ref for v in(dif) = 0 ?0v common-mode range bandwidth = 3mhz 1k 10k 1.2v 10k 10k ?n v out v ref 1213/14 ta05 + 5v 1/2 lt1213 i in 1213/14 ta04 v o = 1v/a 100 w v + 1910 w 100pf load 0.05 w offset 5.5ma bandwidth = 500khz t r = 1 m s 0.1 m f


▲Up To Search▲   

 
Price & Availability of LT1213ACN8

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X